
ISRAEL JOURNAL OF MATHEMATICS 92 (1995), 207 219 

LINEARIZATION OF HOLOMORPHIC MAPPINGS 
ON C(K)-SPACES 

BY 

J A R I  TASKINEN 

Department of Mathematics, P.O. Box 4 (Hallituskatu 15) 
SF-00014 University of Helsinki, Helsinki, Finland 

ABSTRACT 

We prove a universal mapping theorem for "integral" holomorphic map- 

pings on the open unit ball of C(K). In our theorem, the universal space 

is C(K), and the universal mapping is increasing in the positive cone of 

C(K). 

In t roduc t ion  

Universal mapping theorems for holomorphic mappings on Banach or locally 

convex spaces have been presented, for example, in [Ma], [Mul], [Mu2], [Mu-N] 

and [G-G-M]; see also [R] and [S]. Given an open subset U of a Banach space 

X and a Banach space Y, a typical universal mapping result gives a universal 

Banach space Z and a universal holomorphic mapping r U ~ Z such that, for 

every holomorphic mapping (maybe: of some special type) F: U ~ Y, there 

exists a bounded linear operator BE: Z ---+ Y with the property that F = BF or 

Usually, the structure of the universal Banach space remains quite unclear. 

In this paper we study a more restricted situation, namely "integral" (to be 

explained later) holomorphic mappings on the open unit ball U of the Banach 

space C(K).  We prove a universal mapping theorem having the special property 

that the universal Banach space is C(K).  Moreover, our universal mapping is 

increasing (with respect to the natural positive cone of C(K)).  

For the proofs we use the technique developed in IT1]. We need special 

continuous surjections ~ between compact metric spaces K and K1, which have 

the property that the pull-back operator ~~ C(K1) ~ C(K),  ~of  = f o ~, 
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admits a bounded left inverse. Thus our result gives a new application of the 

theory of averaging operators (see below for terminology). 

1. Notation. Integral holomorphic mappings 

We denote by l~l the set {1, 2, 3, . . .}.  All Banach spaces are over the complex 

scalar field. The space of bounded linear operators between the Banach spaces 

X and Y is denoted by L(X, Y), or by L(X), if X = Y; the dual of X is denoted 

by X*. The absolutely convex hull of a subset A of a Banach space is denoted 

by F(A). 

For general topology we refer to [Ku]. If K is a compact metric space, we denote 

by C(K) the Banach space of continuous, complex valued mappings, endowed 

with the sup-norm. If K1 and K2 are compact metric spaces and qa: K1 ~ K2 

is a continuous surjection, we denote by ~o ~ the linear isometry from C(K2) into 

C(K1) given by qo~ = f o qo. If ~o~ is 1-complemented in C(K1), i.e., if 

there exists a contractive projection from C(K1) onto qo~ we say that qo 

admits a regular averaging operator. (Note that  in this case the map qo ~ also has 

a contractive left inverse.) For more details we recommend the reference [L-T], 

Sections II.4.h,i, and [P]. 

For complex analysis in infinite-dimensional spaces we refer to [D2] and [C]. 

If X and Y are Banach spaces and n E N, we denote by P('~X, Y) the space of 

continuous n-homogeneous polynomials X ~ Y. 

Recall that  a continuous n-linear form F on C(K) '~ is called integral, if there 

exists a I~(F) E C(K'~) * such that  

where fk E C(K), ~r(~ k) is the canonical projection from K n onto the kth co- 

ordinate space and the product on the right-hand side is taken pointwise. In 

particular, every continuous linear form is integral. 

Let U c C(K) be open and F: U ~ Y holomorphic. We write the Taylor 

series of F at the point y E U as 
o o  

(1.2) f (x )  = Fo + Z f(Y)(x - Y)' 

where Foe  Y and F (y) e P(nC(K), Y); we denote by F~(U) the corresponding 

symmetric n-linear mapping. (If y = 0, we omit the superindex (y).) 
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1.1 Definition: Let Y be a Banach space, let U C C(K) be open, let F: U --* Y 

be a holomorphic mapping, let B C U be an open ball with center y and radius r, 

and let S C Y* be a bounded subset. We say that  F is uniformly (S, B)-integral, 

if 

1 ~ for every t E S, n E N, the n-linear form 

( f l , - . - ,  fn) v-~ (F(Y)(f l , . . . ,  fn), t) 

is integral 

(1.1)), 
2 o 

(1.3) 

(write tt(F,n,t) for the corresponding element of C(K~) * as in 

][F[]s,B := suP~i(Fo, t)[ + ~-~rn[[#(F,n,t)][C(K.). } < co, 
t E S  ~ 

n = l  

and 

3 ~ the mapping 

o o  

(1.4) t H  E(hn,#(F,n , t ) l r~  

is, for arbitrary h,~ E C(K n) with [[hn[[ <_ 1, continuous S ~ C, when S is 

endowed with the weak* topology. 

Conditions 1 ~ and 3 ~ are natural generalizations of the conditions appearing 

in Theorem 2.a) of [T1]. The condition 2 ~ is a technical requirement necessary 

for our purposes. 

Motivation for Definition 1.1 is provided by the norm equality in Theorem 2.1. 

Moreover, Definition 1.1 and Theorem 2.1 are needed in an essential way in [T2] 

to prove other representation results for holomorphic mappings. 

We remark that  the above concept of integral holomorphic mappings does not 

coincide with the definition of mappings of integral holomorphy type in [D1] and 

[A]. Nevertheless, our definition is quite natural and gives quite a large class of 

holomorphic mappings, as shown by the following 

1.2 Examples: (See also Proposition 1.3.2~ 1 ~ For all n E N the homogeneous 

polynomials Pv: C(K) --* C(K), f H fn (pointwise multiplication) are uni- 

formly (S, B)-integral for every S and B as in Definition 1.1. (The symmetric n- 

linear mapping corresponding to P, is Pn E L(C(K) '~, C(K)) ,  Pn: ( f i , - - - ,  .f,~) ~-* 
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1-Ik=l fk- Given t E S, the element #(Pn, n, t) is D't, where D' is the transpose 

of the diagonal operator D e L(C(K"), C(K)), (Dh)(s) = h(s , . . . ,  s) .) 

Note especially that the identity operator is uniformly integral, but that it is 

not e.g. a Pietsch-integral operator (see Theorem VI.3.12 in [D-U]). Hence, the 

classical definitions of integral mappings do not seem so useful for our purposes; 

they give too restricted classes of examples. 

2 ~ Let U C C(K) be the open unit ball, let Y = C(K) and let h be a scalar 

valued holomorphic mapping on the open unit disc of C such that  its Taylor 

coefficients at 0 form an absolutely summable sequence. Then the map (Hf)(t)  = 

h(f)(t), f E U, t e K, is uniformly (K, U)-integral on U. (Here the set K is 

identified in the canonical way with a subset of C(K)*. The elements #(H, n, t) 

of Definition 1.1 are Dirac measures multiplied by complex scalars coming from 

the Taylor series of h.) 

3 ~ Denote by U C C(K) the open unit ball. I fFn :  K •  ~ ~ C i s  for all 

n E l~l U {0} a continuous function satisfying 

n=O 

then the holomorphic mapping 

(1.5) 
o o  

where s = (S l , . . . ,  s,~) E K '~ and #n is a Radon probability measure on K ~, is 

uniformly (K, U)-integral U ~ C(K). 

If h is as in 2 ~ and U, Fx and #1 are as above, then also the map 

(1.6) f ~ /K  El( ' ,  s)h(f(s))dl~l(s) 

is uniformly (K, U)-integral. 

Using the notation of Definition 1.1 we now state 

1.3 PROPOSITION: 1 ~ I f S  satist~es, for some c > 0, suptes I{f,t)] _> ciifiiY for 

all f E Y,  then the space of uniformly (S, B)-integral mappings B ~ Y is a 

Banach space. 
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2 ~ If  F: B --* Y is uniformly (S, B)-integral, the center of B is O, and A 6 

L( C( K ) ) is a contraction, then F o A is uniformly (S, B )-integral. 

3 ~ If  $1 C S C Y* and BI C B is an open ball, and if  F: B ~ Y is uniformly 

(S, B )-integral, then F is uniformly ($1, B1)-integral. 

Proof: 1 ~ We prove only the completeness. We may assume that  the center of 

B is 0. If G: B --* Y is uniformly (S, B)-integral, a straightforward estimate, 

using the assumption on the set S, shows that 

(1.7) Ilallo := sup Ila(f)llY ~ c-lllalls,B, 
yeB 

Let now (F(m))m~=l be a [l" I lS,B-Cauchy sequence of uniformly (S, B)-integral 

mappings B ~ Y. By (1.7), (F(m))m~=l is Cauchy also with respect to II-II0. 
Since the space H ~ (B; Y) of bounded holomorphic mappings B ~ Y is complete 

with respect to the sup-norm ( = I1" Iio ), we see that (F(m))~=l converges in 

II-Iio to a holomorphic map F: B --~ Y. 

Write the Taylor series F = }--~n Fn and F (m) = ~--~n Fn,m. 

Let us fix n 6 N and t 6 S for a moment. The sequence (#(F ('~), n, t))m~=l 

converges in C(Kn) * to an element #(n, t), in view of (1.3). For all m and f 6 B 

we have the equality 

, )> (Fmm(f),t) = o r  (F (m) n, t  

where r (k) is as in (1.1). Since the subspace of n-homogeneous polynomials is 

complemented in H~(B;  Y) (as a consequence of the Cauchy integral formula), 

we have Fn,m --* F~ in the sup-norm, and hence 

(Fn( f ) , t )=  ( ~ = l f  ~ > �9 

This implies (in view of the 1-1 correspondence of homogeneous polynomials 

and symmetric multilinear mappings; #(n, t) is symmetric with respect to the 

coordinate changes in C(Kn)) 

(1.8) 
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for fk E B. This proves 1 ~ of Definition 1.1 for F. 

To see 2 ~ of Definition 1.1, we fix t E S and consider for every m E l~l the 

sequence 

M(m)(t) := ((Fo,,n,t),rlz(F(m),l,t),r2#(F(m),2, t), . . . )  e ~l((c(gn)*)~=o). 

Since (F(m))m~=l is Cauchy with respect to (1.3), the sequence (M(m)(t))~=l is 

Cauchy in ~l((C(Kn)*)n) and converges to M(t) E ~i((C(Kn)*)n). In view of 

(1.3) the convergence is even uniform with respect to t. Hence, 

(1.9) sup IiM(t)]iel((c(N.).),) < oo. 
tES 

But the nth coordinate of M(t) equals rn#(n, t) above. This, (1.8) and (1.9) 

imply 2 ~ of Definition 1.1 for F. 

For all n e N, let hn ~ C(Kn), IIh,~ll <_ 1. By assumption, for every m, the 

map 
O O  

F(m): t ~ E(h,~,#(F('~),n,t))r~ 
n----1 

is continuous S -~ C for the weak*-topology of S. Since the sequence (F  ('~))~=1 

is Cauchy with respect to the norm II" Iis,B, the sequence (F(.m))~_ 1 is Cauchy 

in C(S). This implies that F satisfies 3 ~ of Definition 1.1. 

2 ~ Recall that  if A E L(C(K)) and IIAI] < 1, then for all n E 51, n _> 2, the 

map 
n n 

A 1-[ o 4 1-I o 4 
k = l  k----1 

where fk E C(K) and r(k) is as in (1.1), can be extended to a linear contraction 

An E L(C(Kn)) (see e.g. [KS], 44.7.(3) and 44.4.(1)). If now F is as in the 

assumption and #(F,n,t)  E C(Kn) * is for all n,t as in Definition 1.1, then we 

can define 

Iz(F o A, n, t) := A~lz(F, n, t), 

where A" E L(C(Kn) *) is the transpose of An. It is a straightforward matter  to 

verify that the conditions of Definition 1.1 are satisfied. 

3 ~ Let z and Q be the center and radius of B1 so that I]z - Y]I <: r - ~. If 

(n,~) K k K n the canonical projection onto k, n E N and n < k, we denote by ~r k : --* 
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the last n coordinate spaces. We then define, for all n E N, t E S1, the linear 

form #(Z)(F,n,t) E C(Kn) * by 

(I.I01 

z(:) (h,p(Z)(F,n,t)):= ( z - y )  oTr (m) (ho-, k ),#(F,k,t) . 
k=n 

(Here 0 o r (m) is to constant 1-Im=l(z - y) understood be the 1.) The convergence 

of (1.10) follows for every t E $1 by the estimate 

(1.11/ 

~ ll~(Z)( f , n, t)llc(K~).O n 
n=l 

_< ~ sup ]((1-I (z--y) oTr(km))(holr(k'~'k)),p(F,k,t))lO n 
heC(K~), n = l  k----n m = l  

Ilhll<x 

< ~ ~ (kn) llP(F,k,t)'lc(Kk)" "z-Yl lk-np n 
k = l  n = l  

<_ II,(F,k, tlllc(K~l. E (r - O)k-~p '~ 
k = l  n = l  

< ~-~lll~(F,k,t)llC(K~).r k < oo. 
k = l  

By [C], Theorem 11.11 and (1.10) above, (1.11) also shows that l~  ~ of Definition 

1.1 hold for $1 and B1 instead of S and B. 

Finally, to see 3 ~ of Definition 1.1, assume that h,~ E K '~, Ilhntl ___ 1 for all n. 

We define, for all k E N, 

k k-n ) 
?~k :'~-?'--k E o r t ( ~ )  (hn ~ E C(Kk)" 

We have 
k 

I'~?~'lC(K.)<r-kE(kn)p'~llz--y'lk-n 
n----1 

k 

n = l  

It follows from (1.10) that  for all t E $1 

E<hn,p(~)(F,n,t)}o n= E(~Tk,p(F,k,t))rk. 
n = l  k = l  
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Hence, 3 ~ for the case  S1, B1 follows from 3 ~ for the case S, B. I 

2. A un ive r s a l  m a p p i n g  theorem 

In this section we prove a universal mapping theorem for (K, U)-integral holo- 

morphic mappings on the open unit ball of C(K). The point is that  in our 

theorem the space C(K) itself can be taken as the universal Banach space. 

In Theorem 2.1 we denote by X a Banach space, by K be an uncountable 

compact metric space, by U the open unit ball of C(K) and by S the closed 

unit ball of X*. The set K is also considered as a subset of C(K)*: for every 

t e K there corresponds the point evaluation 6t: f ~ f(t), f E C(K). This 

identification is a homeomorphism, when C(K)* is endowed with the weak*- 

topology. We denote by t: X r X** the canonical embedding. 

2.1. THEOREM: There exists a universal holomorphic mapping r U -~ C(K) 

such that for every uniformly ( K, U)-integral (resp. ( S, U)-integral) holomor- 

phic F: U ~ C(K) (resp. U ~ X) there exists BF E L(C(K)) (resp. BF E 
L( C( K ), X**)) such that the following diagram commutes: 

U F * C(K) [ 

C(K) 

U F * X '  e , Z**  / 

Moreover, IIFIIK,V = IIBFll (resp. IlFIIs,v -IIBFll). 

Proof 1 ~ We prove the existence of the universal mapping. Let us denote by Q 

the Hilbert cube yInr [0,1]. Since every compact metric space can be embedded 

in Q (see e.g [Ku] II.22.II), it is possible to find a sequence (H,~)n~__o of disjoint 

closed subsets of Q such that  H,~ is homeomorphic to K n. (So, H0 is a one-point 

set, denote it by {t0}.) For n E N, k = 1 , . . . , n ,  let y,~ be a homeomorphism 

Hn -~ K n, let ~r (k) be the canonical projection from K ~ onto the kth coordinate 

space K and let 

(2.1) q0~ ) := r(~ k) oy,~: Hn ~ K. 

Since K is uncountable, it has a subset A homeomorphic to the Cantor set 
oo 1 l-L=1{0, } (see [Ku], III.36.V, Corollary 1). By [P], Theorem 5.6, there exists a 

continuous surjection Q: A ~ Q having a regular averaging operator. We denote 
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by E (resp. En) the Borsuk-Kakutani extension operator C(A) --. C(K) (resp. 

C(Hn) ---* C(Q) (see [L-T], Theorem II.4.14.); since for n # m the sets Hn and 

Hm have disjoint open neighborhoods, a simple trick shows that we may assume 

En( f )Em(g )=Oforn#m,  f E C ( H n ) ,  gEC(Hm)). 
We now define 

n = l  k = l  

(Here 1 denotes the constant function H0 --* C with value 1.) If Iifi] -~ c < 1, we 

get the estimate 
n 

H EQ~176 ~- cn 
k=l c(K) 

which proves that  r is a holomorphic mapping U ~ C(K). 
We define the operator BF. Let ~-~n F~ be the Taylor series of F at 0 and let 

for a l l n  E N a n d t  E K (resp. t E S )  # (F ,n , t )  E C(Kn) * be as in Definition 

1.1. Using (1.3) we see that for all t 

(2.3) (I[#(F, n, t)iic(Kn). )n~176 1 E 21. 

So we can define #(F, t) E C(Q)* for all t by the convergent series 

o o  

(2.4 / (], p(F, t)) = E (  f o y~l,  p(F, n, t)). 
n = l  

We define BE E L(C(KI) (resp. L(C(K),X**) ) by 

(Bgf)(t) = (O~ Fo(t)5(to) + #(F, t)) (2.5) 

(resp. 

(BFf, t) = {Q~  (Fo, t)5(to)+ t t (F, t)} ), 

where t E K (resp. t E S), c~ C(A) --~ C(Q) is a contractive left inverse of Q~ 

(see Section 1), 5(to) E C(Q)* is the point evaluation g ~ g(to), g E C(Q) (recall 

H0 = {to} by definition) and R: C(K) --* C(A) is the restriction operator. Using 

(1.3) and (1.4) it is a straightforward matter to verify that Bp is a bounded 

linear operator between the given spaces. 
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We finally verify the identity F(f) = BEe(f). In the case t E K, for f E U, 

(BF~(f))(t) = ((O~176 + ~ f i  EoOEn~o(k)~ + #(F,t)) 
n:l k : l  

(2.6) = (Eol + ~ 1~I Enqo(k)~ Fo(t)6(to) + #(F,t)). 
n = l  k= l  

By the choice of E,~, supp(Eng) M H,~ = 0 for all g ~ C(H~), m # n, hence (2.6) 

equals 

(E01, Fo(t)6(to)) + ( E End(k)~ #(F, t)> 
n = l  k= l  

= Fo(t) + E ( Enqo~)~ o ~?~1 #(F,n, t)> 
n : l  k : l  

OO 

= Fo(t)  + E ( f  o ?l'(n 1 ) - . .  f o ?r(n n) ,  ~ ( F ,  n ,  t ) )  = F ( f ) ( t ) .  
n = l  

A similar calculation in the case t E X* completes the proof of the existence of 

the universal mapping. 

2 ~ We prove the norm equality IIFHK,u = IIBFll. First, 

OQ 

IIBFII < sup ~l(0~ 5(tol)Fo(t)l + E I((e~ o/~1, . (F ,  n, t)>l} 
11111<1" 

- n=l 
t6K 

_< sup~lFo(t)l + Z sup I(h,#(F,n,t))l} = IIFIIK,U. 
tEK~ n=l hEC(K'~)' 

llhll<1 

For the converse, let ~ > 0 and choose s E K, M E N such that 

M 

(2.7) IIfiIK,u<lFo(s)l+ E sup I(h,#(F,n,s))i+z/2. 
n = l  heC(K'*), 

Ilhll<l 

For each 1 < n < M choose fn E C(K ~) such that Iifni[ -< 1 and 

(2.8) </n,#(F,n,s)) + e2 -'~-2 > II,(F,n,s)llc(~:.).. 

We then have 

M 

(2.9) lIFlIK,V < lFo(s)l + E(f,~,#(F,n,s))+ e. 
n=l 
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Define f := [Fo(s)I(Fo(s))-IEQ~ + EM=I E~~176 6 C(K). The sup- 

ports of the functions E ~ = ,Jh~fn axe disjoint for different n. Hence we have Ilfl] 1. 
A calculation similar to (2.6) etc. shows that 

M 

(BFf)(s) = IFo(s)I + E { f ~ , # ( F , n , s ) ) .  
n = l  

This and (2.9) imply ]IBFI] >_ ]]FIlK,U - e. 

The other case is similar. I 

Let us denote by K: C C(K) the cone of positive elements, i.e. functions f 

satisfying f ( t )  >_ 0 for a l l t  6 K.  Let D C K: and let F: D --* C(K). The 

mapping F is called increas ing,  if 

(2.10) F(f)( t)  < F(g)(t) 

for all t 6 K,  when f ,  g 6 C(K) are such that f ( t )  < g(t) for all t 6 K.  Moreover, 

F is called s t r i c t ly  increasing,  if it is increasing and a strict inequality holds 

in (2.10) for some t, if f(s)  < g(s) for some s 6 K.  (See [De], Section 19.3.) 

We observe the following consequence of Theorem 2.1 and especially the defi- 

nition (2.2): recall that  the pull-back operators as well as the Borsuk-Kakutani 

extension operators are positive operators with respect to/E (see [L-T], Theorem 

II.4.14.). 

2.2 THEOREM: Let K, U, X and S be as in Theorem 2.1; assume that X is 

reflexive. Every uniformly ( K, U )-integral (resp. ( S, U )-integral) holomorphic 

mapping F: U -* C(K) (resp. F: U --* X )  has a representation 

(2.11) F = BF o r 

where BF 6 L(C(K)) (resp. BF E L (C(K) ,X )  ), r U --~ C(K) is holomorphic, 

r N U) C K:, and the restriction o r e  to IC n U is strictly increasing. 
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